
High Interest Rate ML.pdf

Production-ready ML systems

Testing and monitoring

ML based system testing
 (1) 2

What to test: data, model, and infrastructure

ML system testing is also more 
complex a challenge than testing 
manually coded systems, due to 
the fact that ML system behavior 
depends strongly on data and 
models that cannot be strongly 
specified a priori
ML Test Score.pdf

TESTS FOR DATA

the behavior of ML systems is 
not specified directly in code but 
is learned from data

 (1) 2

training data needs testing like 
code, and a trained ML model 
needs production practices like a 
binary does, such as 
debuggability, rollbacks and 
monitoring
7 data tests

attempt to add a sufficient set of 
tests of the data

Data 1: Feature expectations are captured in a schema

It is useful to encode intuitions 
about the data in a schema so 
they can be automatically 
checked.

 (1) 2

an adult human is surely 
between one and ten feet in 
height. The most common word 
in English text is probably ‘the’, 
with other word frequencies 
following a power-law 
distribution. Such expectations 
can be used for tests on input 
data during training and serving

 (1) 2

To construct the schema, one 
approach is to start with 
calculating statistics from 
training data, and then ad- 
justing them as appropriate 
based on domain knowledge

 (1) 2

start by writing down 
expectations and then compare 
them to the data to avoid an 
anchoring bias

 (1) 2

Data 2: All features are beneficial

A kitchen-sink approach to 
features can be tempting, but 
every feature added has a 
software engineering cost. 
Hence, it’s important to 
understand the value each 
feature provides in additional 
predictive power (independent 
of other features).

 (1) 2

run this test are by computing 
correlation coefficients, by 
training models with one or two 
features, or by training a set of 
models that each have one of k 
features individually removed

 (1) 2

Data 3: No feature’s cost is too much

It is not only a waste of 
computing resources, but also 
an ongoing maintenance burden 
to include ?-features that add 
only minimal predictive benefit 
[1].

 (1) 2

To measure the costs of a 
feature, consider not only added 
inference latency and RAM 
usage, but also more upstream 
data dependencies and other 
instability incurred due to 
dependencies

 (1) 2

Data 4: Features adhere to meta-level requirements

Your project may impose 
requirements on the data 
coming in to the system. It might 
prohibit features derived from 
user data, prohibit the use of 
specific features like age, or 
simply prohibit any feature that is 
deprecated. It might require all 
features be available from a 
single source. However, during 
model development and 
experimentation, it is typical to 
try out a wide variety of potential 
features to improve prediction 
quality

 (1) 2

Programmatically enforce these 
requirements, so that all models 
in production properly adhere to 
them

 (1) 2

Data 5: The data pipeline has appropriate privacy controls

Training data, validation data, 
and vocabulary files all have the 
potential to contain sensitive 
user data

 (1) 2

budget sufficient time during 
new feature development that 
depends on sensitive data to 
allow for proper handling. Test 
that access to pipeline data is 
controlled as tightly as the 
access to raw user data

 (1) 3

test that any user-requested data 
deletion propagates to the data 
in the ML training pipeline, and 
to any learned models.

 (1) 3

Data 6: New features can be added quickly

The faster a team can go from a 
feature idea to the feature 
running in production, the faster 
it can both improve the system 
and respond to external changes

 (1) 3
Data 7: All input feature code is tested

Feature creation code may 
appear simple enough to not 
need unit tests, but this code is 
crucial for correct behavior and 
so its continued quality is vital. 
Bugs in features may be almost 
impossible to detect once they 
have entered the data 
generation process, especially if 
they are represented in both 
training and test data.

 (1) 3

TESTS FOR MODEL DEVELOPMENT
 (1) 3

7 model tests

Model 1: Every model specification undergoes a code review and is checked in to a repository

It can be tempting to avoid code 
review out of expediency, and 
run experiments based on one’s 
own personal modifications.
In addition, when responding to 
production incidents, it’s crucial 
to know the exact code that was 
run to produce a given learned 
model. For example, a 
responder might need to re-run 
training with corrected input 
data, or compare the result of a 
particular modification. Proper 
version control of the model 
specification can help make 
training auditable and improve 
reproducibility.

 (1) 3
Model 2: Offline proxy metrics correlate with actual online impact metrics

Model 2: Offline proxy metrics 
correlate with actual online 
impact metrics: A user-facing 
production system’s impact is 
judged by metrics of 
engagement, user happiness, 
revenue, and so forth. A machine 
learning system is trained to 
optimize loss metrics such as 
log-loss or squared error.
A strong understanding of the 
relationship between these 
offline proxy metrics and the 
actual impact metrics is needed 
to ensure that a better scoring 
model will result in a better 
production system.

 (1) 3

The offline/online metric 
relationship can be mea- sured 
in one or more small scale A/B 
experiments using an 
intentionally degraded model.

 (1) 3

Model 3: All hyperparameters have been tuned

A ML model can often have 
multiple hyperparameters, such 
as learning rates, number of 
layers, layer sizes and 
regularization coefficients. 
Choice of the hyperparameter 
values can have dramatic impact 
on prediction quality.

 (1) 3
Model 4: The impact of model staleness is known

Many production ML systems encounter rapidly 
changing, non-stationary data. Examples include 
content recommen- dation systems and financial ML 
applications. For such systems, if the pipeline fails to 
train and deploy sufficiently up-to-date models, we say 
the model is stale. Understanding how model staleness 
affects the quality of predictions is necessary to 
determine how frequently to update the model.
If predictions are based on a model trained yesterday 
versus last week versus last year, what is the impact on 
the live metrics of interest? Most models need to be 
updated eventually to account for changes in the 
external world; a careful assessment is important to 
decide how often to perform the updates

 (1) 3

One way of testing the impact of 
staleness is with a small A/B 
experiment with older models. 
Testing a range of ages can 
provide an age-versus-quality 
curve to help understand what 
amount of staleness is tolerable.

 (1) 3

Model 5: A simpler model is not better

Regularly testing against a very 
simple baseline model, such as a 
linear model with very few 
features, is an effective strategy 
both for confirming the 
functionality of the larger 
pipeline and for helping to 
assess the cost to benefit 
tradeoffs of more sophisticated 
techniques.

 (1) 3
Model 6: Model quality is sufficient on all important data slices

Model 6: Model quality is 
sufficient on all important data 
slices: Slicing a data set along 
certain dimensions of interest 
can improve fine-grained 
understanding of model quality. 
Slices should distinguish subsets 
of the data that might behave 
qualitatively differently, for 
example, users by

 (1) 3

country, users by frequency of 
use, or movies by genre.
Examining sliced data avoids 
having fine-grained quality 
issues masked by a global 
summary metric, e.g. global 
accuracy improved by 1% but 
accuracy for one country 
dropped by 50%. This class of 
problems often arises from a 
fault in the collection of training 
data, that caused an important 
set of training data to be lost or 
late.

Consider including these tests in 
your release process, e.g. release 
tests for models can impose 
absolute thresholds (e.g., error 
for slice x must be <5%), to catch 
large drops in quality, as well as 
incremental (e.g. the change in 
error for slice x must be <1% 
compared to the previously 
released model).

 (1) 4

Model 7: The model has been tested for considera- tions of inclusion

There have been a number of 
recent studies on the issue of ML 
Fairness [14], [15], which may 
arise inadvertently due to factors 
such as choice of training data. 
For example, Bolukbasi et al. 
found that a word embedding 
trained on news articles had 
learned some striking 
associations between gender 
and occupation that may have 
reflected the content of the news 
articles but which may have 
been inappropriate for use in a 
predictive modeling context [14]. 
This form of potentially 
overlooked biases in training 
data sets may then influence the 
larger system behavior.

 (1) 4

Tests that can be run include 
examining input features to 
determine if they correlate 
strongly with protected user 
categories, and slicing 
predictions to determine if 
prediction outputs differ 
materially when conditioned on 
different user groups.

 (1) 4

the approach of collecting more 
data to ensure data 
representation for potentially 
under-represented categories or 
subgroups can be effective in 
many cases

 (1) 4

7 ML infrastructure tests

TESTS FOR ML 
INFRASTRUCTURE

 (1) 4

An ML system often relies on a 
complex pipeline rather than a 
single running binary

Infra 1: Training is reproducible

Ideally, training twice on the 
same data should produce two 
identical mod- els.

 (1) 4
Infra 2: Model specification code is unit tested

Al- though model specifications 
may seem like “configuration”, 
such files can have bugs and 
need to be tested

 (1) 4
Infra 3: The full ML pipeline is integration tested

A complete ML pipeline typically 
consists of assembling training 
data, feature generation, model 
training, model verification, and 
deployment to a serving system.

 (1) 5

Faster running integration tests 
with a subset of training data or 
a simpler model can give faster 
feedback to developers while 
still backed by less frequent, 
long running versions with a 
setup that more closely mirrors 
production.

 (1) 5

Infra 4: Model quality is validated before attempting to serve it

After a model is trained but 
before it actually affects real 
traffic, an automated system 
needs to inspect it and verify that 
its quality is sufficient; that 
system must either bless the 
model or veto it, terminating its 
entry to the production 
environment

 (1) 5

test for both slow degradations 
in quality over many versions as 
well as sudden drops in a new 
version. For the former, setting 
loose thresholds and comparing 
against predictions on a 
validation set can be useful; for 
the latter, it is useful to compare 
predictions to the previous 
version of the model while 
setting tighter thresholds.

 (1) 5

Infra 5: Model allows debugability

The model allows debugging by 
observing the step-by-step 
computation of training or 
inference on a single example

 (1) 5

When someone finds a case 
where a model is behaving 
bizarrely, how difficult is it to 
figure out why? Is there an easy, 
well documented process for 
feeding a single example to the 
model and investigating the 
computation through each stage 
of the model

 (1) 5

An internal tool that allows users 
to enter examples and see how 
the a specific model version 
interprets it can be very helpful. 
The TensorFlow debugger [17] is 
one example of such a tool.

 (1) 5

Infra 6: Models are tested via a canary process before deployment

Models are tested via a canary 
process before they enter 
production serving 
environments

 (1) 5

One recurring problem that 
canarying can help catch is 
mismatches between model 
artifacts and serving infras- 
tructure. Modeling code can 
change more frequently than 
serving code, so there is a 
danger that an older serving 
system will not be able to serve a 
model trained from newer code

 (1) 5

To mitigate the new-model risk 
more generally, one can turn up 
new models gradually, running 
old and new models 
concurrently, with new models 
only seeing a small fraction of 
traffic, gradually increased as the 
new model is observed to 
behave sanely.

 (1) 5

Infra 7: Models can be rolled back

Models can be quickly and safely 
rolled back to a previous serving 
version

 (1) 5

7 monitoring tests

MONITORING TESTS FOR ML

 (1) 6

An ML system by definition is 
making predictions on 
previously unseen data, and 
typically also incorporates new 
data over time into training. The 
standard approach is to monitor 
the system, i.e. to have a 
constantly-updated “dashboard” 
user interface displaying relevant 
graphs and statistics, and to 
automatically alert the 
engineering team when 
particular metrics deviate 
significantly from expecta- tions. 
For ML systems, it is important to 
monitor serving systems, training 
pipelines, and input data.

Monitor 1: Dependency changes result in notification

ML systems typically consume 
data from a wide array of other 
systems to generate useful 
features. Partial outages, version 
upgrades, and other changes in 
the source system can radically 
change the feature’s meaning 
and thus confuse the model’s 
training or inference, without 
necessarily producing values 
that are strange enough to 
trigger other monitoring

 (1) 6
Monitor 2: Data invariants hold in training and serving inputs

It can be difficult to effectively 
monitor the internal behavior of 
a learned model for correctness, 
but the input data should be 
more transparent

 (1) 6

for detecting problems where 
the world is changing in ways 
that can confuse an ML system.

 (1) 6

Using the schema constructed in 
test Data 1, measure whether 
data matches the schema and 
alert when they diverge 
significantly. In practice, careful 
tuning of alerting thresholds is 
needed to achieve a useful 
balance between false positive 
and false negative rates to 
ensure these alerts remain useful 
and actionable

 (1) 6

Monitor 3: Training and serving features compute the same values

The codepaths that actually 
generate input features may 
differ at training and inference 
time.

 (1) 6

the different codepaths should 
generate the same values, but in 
practice a common problem is 
that they do not. This is 
sometimes called “training/
serving skew” and requires 
careful monitoring to detect and 
avoid.

imagine adding a new feature to 
an existing production system. 
While the value of the feature in 
the serving system might be 
computed based on data from 
live user behavior, the feature 
will not be present in training 
data, and so must be backfilled 
by imputing it from other stored 
data, likely using an entirely 
independent codepath. Another 
example is when the 
computation at training time is 
done using code that is highly 
flexible (for easy 
experimentation) but inefficient, 
while at serving time the same 
computation is heavily optimized 
for low latency.

 (1) 6

To measure this, it is crucial to 
log a sample of actual serving 
traffic

 (1) 6

Another approach is to compute 
distribution statistics on the 
training features and the 
sampled serving features, and 
ensure that they match. Typical 
statistics include the minimum, 
maximum, or average, values, 
the fraction of missing values, 
etc.

 (1) 6

Monitor 4: Models are not too stale
 (1) 6

we recommend monitoring how 
old the system in production is, 
using the prior measurement as 
a guide for determining what 
age is problematic enough to 
raise an alert

 (1) 6

Monitor 5: The model is numerically stable

Invalid or implausible numeric 
values can potentially crop up 
during model training without 
triggering explicit errors, and 
knowing that they have occurred 
can speed diagnosis of the 
problem.

 (1) 7

Explicitly monitor the initial 
occurrence of any NaNs or 
infinities. Set plausible bounds 
for weights and the fraction of 
ReLU units in a layer returning 
zero values, and trigger alerts 
during training if these exceed 
appropriate thresholds.

 (1) 7

Monitor 6: The model has not experienced degradation

Such as a dramatic or slow-leak 
regressions in training speed, 
serving latency, throughput, or 
RAM usage

 (1) 7

it is useful to slice performance 
metrics not just by the versions 
and components of code, but 
also by data and model versions. 
Degradations in computational 
performance may occur with 
dramatic changes (for which 
comparison to performance of 
prior versions or time slices can 
be helpful for detection) or in 
slow leaks (for which a pre-set 
alerting threshold can be helpful 
for detection)

 (1) 7

Monitor 7: The model has not experienced a regression in prediction quality

Monitor 7: The model has not 
experienced a regression in 
prediction quality on served data

 (1) 7

measuring a model’s quality on 
that validation data before 
pushing it to serving is only an 
estimate of quality metrics on 
actual live serving inputs

 (1) 7

Measure statistical bias in 
predictions, i.e. the average of 
predictions in a particular slice of 
data.

 (1) 7

In some tasks, the label actually 
is available immedi- ately or 
soon after the prediction is made 
(e.g. will a user click on an ad). In 
this case, we can judge the 
quality of predictions in almost 
real-time and identify problems 
quickly.

 (1) 7

can be useful to periodically add 
new training data by having 
human raters manually annotate 
labels for logged serving inputs

 (1) 7

marginnote3app://note/86FDDE0C-F844-4193-B83B-605C07D573AA
marginnote3app://note/31097796-AE31-4C33-BDD6-9DE7A6086616
marginnote3app://note/188FD5AF-C823-44A6-B6A5-FDF4078059A2
marginnote3app://note/BE7B9D5C-14C2-4CCE-81BA-477EEF3874B9
marginnote3app://note/FC2E9DBA-B1AB-40F3-BEE5-0780A7A8AA88
marginnote3app://note/7E8EADBD-C88E-4758-AA7A-9EDBE0BC1834
marginnote3app://note/3D35793A-CD05-41C6-9919-0446437C6335
marginnote3app://note/3152BEEA-FA50-487A-81BE-9219E2064D98
marginnote3app://note/41C29D1E-B9B5-4208-BC22-4D17D24E2DA1
marginnote3app://note/EE692566-153E-4E75-AB3F-2248BCDD13B4
marginnote3app://note/8E4EA937-675A-400E-8121-39CED9397934
marginnote3app://note/F1AF891B-05E7-4C94-8644-F1CC8713348D
marginnote3app://note/CB827604-9B34-403F-A526-54D31CCBACF3
marginnote3app://note/51EB8A22-F4E2-4690-985F-B0D012424112
marginnote3app://note/48CAE676-A462-478E-929E-FE64AD5016BF
marginnote3app://note/608E9D14-2EB4-4C90-B332-CC4E675AB636
marginnote3app://note/7754A21D-83C4-40FC-828B-274727902153
marginnote3app://note/2CC48F2C-B3FA-4C20-80A3-CAD68123ED5F
marginnote3app://note/CD85F5D3-F1F6-402E-BA5D-F7B4B9E2AC0A
marginnote3app://note/1CF427D9-BCE6-433C-AB7E-1340960871FE
marginnote3app://note/1CD1118E-4237-4169-8871-5A31E4E3BE64
marginnote3app://note/BC400338-EAC2-4C8C-9D7E-E947869486D5
marginnote3app://note/2B8C08D5-302A-49B1-B24D-40492B35826D
marginnote3app://note/8C7DE9ED-412F-48D6-952F-33E4CF9CD821
marginnote3app://note/263DC24B-06C7-474C-A94E-8FD598A5BFBE
marginnote3app://note/1FD18E7A-F7F1-4C02-B60A-117F0BE36CAA
marginnote3app://note/1625D3B9-0752-44F2-A5F5-C70D9CDFBC4E
marginnote3app://note/F6575309-DE55-4982-A42D-ED3756A0383C
marginnote3app://note/825E07CC-3E1E-4FFD-9CEF-C95A17BDEF0E
marginnote3app://note/A2E39784-8910-4226-A5B6-B32B917BAC3C
marginnote3app://note/C0C964CA-9DDD-4774-BB72-26BFB8F01F75
marginnote3app://note/CFA2DF7D-A8CE-4219-9E86-8C226304D356
marginnote3app://note/98EC4704-284E-418F-8A3D-F2CA8D5820A7
marginnote3app://note/5E24C953-E761-4DA0-A9D5-55AFE8D8917E
marginnote3app://note/0491F8D0-E4A8-487B-9AE1-716BE13B2B0D
marginnote3app://note/7253F454-0319-48EB-8DF3-DC45F2358623
marginnote3app://note/66A6826D-AF12-457B-87A2-6FF17B2241F0
marginnote3app://note/2F54183D-A81D-4934-8807-FFB41E96E109
marginnote3app://note/0D37E2A9-A0D7-40BA-86A4-97FE139EE011
marginnote3app://note/814CA5D7-84B1-4235-B1EA-037A96714D53
marginnote3app://note/6F946755-A4F0-4408-AA88-757299A94587
marginnote3app://note/68614921-4C30-47CF-8B3A-3D290979C28A
marginnote3app://note/86BB8CE5-9A61-4B93-A187-04B8734960B3
marginnote3app://note/D8630969-AF2F-43C8-8305-69C33744C1FD
marginnote3app://note/0B3D1F92-9567-4BA5-A645-932240ADC946
marginnote3app://note/6519E5C3-17A5-4A4A-878A-985F647F2B5B
marginnote3app://note/4AF6D383-762A-480E-93A1-51877C01E360
marginnote3app://note/DC8891C0-381D-482E-B72E-6C3D5E8D632E
marginnote3app://note/05AC2945-A5E9-4667-A1FD-5A3562707EBE
marginnote3app://note/B77CE019-4DC6-45A5-84ED-B951E861FB51
marginnote3app://note/E06D4FD8-EBF7-4971-9177-E69C3C9B4BAE
marginnote3app://note/271FEC25-D615-4F4F-8220-51ACEDCB0FEB
marginnote3app://note/29D4A12E-A857-4DE3-B06A-F6204A833FA8
marginnote3app://note/6406CA9E-C84F-45D6-BCE9-A1E0D3342766
marginnote3app://note/4D571409-69A5-4774-9281-88C9876BF196
marginnote3app://note/2A5ECDD0-2D7F-4155-A652-35A3938BBD52
marginnote3app://note/C9795B18-7CB2-402B-AEF1-253B7EA603B5
marginnote3app://note/1A00EAF1-7374-444A-9BC0-867EBDE05F27
marginnote3app://note/251AAFFA-2A79-4CB4-A19D-0E021A437D40
marginnote3app://note/D6C2686A-2B8A-411D-84AA-480FBFC52294
marginnote3app://note/03BCFB21-43A5-48DB-974A-8C9E7DE26912
marginnote3app://note/3BB8902A-9CE3-4D9D-B000-4FE9FE286764
marginnote3app://note/C5CC532F-63D7-4668-99B3-101AD7C40FEB
marginnote3app://note/A9740D46-24CB-490C-B9BD-90664B5E11A1
marginnote3app://note/2E726E42-23F4-433C-8AEE-7A4DB4F88B68
marginnote3app://note/38A09D06-AE76-496B-A404-AD678FC385A6
marginnote3app://note/E23EB869-4FF6-4A9E-B531-158187959A3E


To construct the schema, one approach is to start with calculating statistics from training data, and then ad- 
justing them as appropriate based on domain knowledge

 (1) 2 (1) 2

an adult human is surely between one and ten feet in height. The most common word in English text is 
probably ‘the’, with other word frequencies following a power-law distribution. Such expectations can be used 
for tests on input data during training and serving

 (1) 2 (1) 2

Data 1: Feature expectations are captured in a schema

It is useful to encode intuitions about the data in a schema so they can be automatically checked.

 (1) 2 (1) 2

TESTS FOR DATA

training data needs testing like code, and a trained ML model needs production practices like a binary does, such 
as debuggability, rollbacks and monitoring

7 data tests
attempt to add a sufficient set of tests of the data

the behavior of ML systems is not specified directly in code but is learned from data

 (1) 2 (1) 2

ML based system testing

What to test: data, model, and infrastructure
ML system testing is also more complex a challenge than testing manually coded systems, due to the fact that ML 
system behavior depends strongly on data and models that cannot be strongly specified a priori

ML Test Score.pdf

 (1) 2 (1) 2

Testing and monitoring

Production-ready ML systems

High Interest Rate ML.pdf

marginnote3app://note/86FDDE0C-F844-4193-B83B-605C07D573AA
marginnote3app://note/31097796-AE31-4C33-BDD6-9DE7A6086616
marginnote3app://note/188FD5AF-C823-44A6-B6A5-FDF4078059A2
marginnote3app://note/BE7B9D5C-14C2-4CCE-81BA-477EEF3874B9
marginnote3app://note/FC2E9DBA-B1AB-40F3-BEE5-0780A7A8AA88
marginnote3app://note/41C29D1E-B9B5-4208-BC22-4D17D24E2DA1
marginnote3app://note/66A6826D-AF12-457B-87A2-6FF17B2241F0
marginnote3app://note/2F54183D-A81D-4934-8807-FFB41E96E109


TESTS FOR MODEL DEVELOPMENT

7 model tests

 (1) 3 (1) 3

Data 7: All input feature code is tested

Feature creation code may appear simple enough to not need unit tests, but this code is crucial for correct 
behavior and so its continued quality is vital. Bugs in features may be almost impossible to detect once they 
have entered the data generation process, especially if they are represented in both training and test data.

 (1) 3 (1) 3

Data 6: New features can be added quickly

The faster a team can go from a feature idea to the feature running in production, the faster it can both improve 
the system and respond to external changes

 (1) 3 (1) 3

test that any user-requested data deletion propagates to the data in the ML training pipeline, and to any 
learned models.

 (1) 3 (1) 3

budget sufficient time during new feature development that depends on sensitive data to allow for proper 
handling. Test that access to pipeline data is controlled as tightly as the access to raw user data

 (1) 3 (1) 3

Data 5: The data pipeline has appropriate privacy controls

Training data, validation data, and vocabulary files all have the potential to contain sensitive user data

 (1) 2 (1) 2

Programmatically enforce these requirements, so that all models in production properly adhere to them  (1) 2 (1) 2

Data 4: Features adhere to meta-level requirements

Your project may impose requirements on the data coming in to the system. It might prohibit features derived 
from user data, prohibit the use of specific features like age, or simply prohibit any feature that is deprecated. It 
might require all features be available from a single source. However, during model development and 
experimentation, it is typical to try out a wide variety of potential features to improve prediction quality

 (1) 2 (1) 2

To measure the costs of a feature, consider not only added inference latency and RAM usage, but also more 
upstream data dependencies and other instability incurred due to dependencies

 (1) 2 (1) 2

Data 3: No feature’s cost is too much

It is not only a waste of computing resources, but also an ongoing maintenance burden to include ?-features 
that add only minimal predictive benefit [1].

 (1) 2 (1) 2

run this test are by computing correlation coefficients, by training models with one or two features, or by 
training a set of models that each have one of k features individually removed

 (1) 2 (1) 2

Data 2: All features are beneficial

A kitchen-sink approach to features can be tempting, but every feature added has a software engineering cost. 
Hence, it’s important to understand the value each feature provides in additional predictive power 
(independent of other features).

 (1) 2 (1) 2

start by writing down expectations and then compare them to the data to avoid an anchoring bias  (1) 2 (1) 2

marginnote3app://note/0D37E2A9-A0D7-40BA-86A4-97FE139EE011
marginnote3app://note/EE692566-153E-4E75-AB3F-2248BCDD13B4
marginnote3app://note/814CA5D7-84B1-4235-B1EA-037A96714D53
marginnote3app://note/8E4EA937-675A-400E-8121-39CED9397934
marginnote3app://note/6F946755-A4F0-4408-AA88-757299A94587
marginnote3app://note/F1AF891B-05E7-4C94-8644-F1CC8713348D
marginnote3app://note/68614921-4C30-47CF-8B3A-3D290979C28A
marginnote3app://note/CB827604-9B34-403F-A526-54D31CCBACF3
marginnote3app://note/86BB8CE5-9A61-4B93-A187-04B8734960B3
marginnote3app://note/D8630969-AF2F-43C8-8305-69C33744C1FD
marginnote3app://note/51EB8A22-F4E2-4690-985F-B0D012424112
marginnote3app://note/48CAE676-A462-478E-929E-FE64AD5016BF
marginnote3app://note/7E8EADBD-C88E-4758-AA7A-9EDBE0BC1834


Consider including these tests in your release process, e.g. release tests for models can impose absolute 
thresholds (e.g., error for slice x must be <5%), to catch large drops in quality, as well as incremental (e.g. the 
change in error for slice x must be <1% compared to the previously released model).

 (1) 4 (1) 4

Model 6: Model quality is sufficient on all important data slices

country, users by frequency of use, or movies by genre.
Examining sliced data avoids having fine-grained quality issues masked by a global summary metric, e.g. global 
accuracy improved by 1% but accuracy for one country dropped by 50%. This class of problems often arises 
from a fault in the collection of training data, that caused an important set of training data to be lost or late.

Model 6: Model quality is sufficient on all important data slices: Slicing a data set along certain dimensions of 
interest can improve fine-grained understanding of model quality. Slices should distinguish subsets of the data 
that might behave qualitatively differently, for example, users by

 (1) 3 (1) 3

Model 5: A simpler model is not better

Regularly testing against a very simple baseline model, such as a linear model with very few features, is an 
effective strategy both for confirming the functionality of the larger pipeline and for helping to assess the cost to 
benefit tradeoffs of more sophisticated techniques.

 (1) 3 (1) 3

One way of testing the impact of staleness is with a small A/B experiment with older models. Testing a range 
of ages can provide an age-versus-quality curve to help understand what amount of staleness is tolerable.

 (1) 3 (1) 3

Model 4: The impact of model staleness is known

Many production ML systems encounter rapidly changing, non-stationary data. Examples include content 
recommen- dation systems and financial ML applications. For such systems, if the pipeline fails to train and 
deploy sufficiently up-to-date models, we say the model is stale. Understanding how model staleness affects the 
quality of predictions is necessary to determine how frequently to update the model.
If predictions are based on a model trained yesterday versus last week versus last year, what is the impact on the 
live metrics of interest? Most models need to be updated eventually to account for changes in the external 
world; a careful assessment is important to decide how often to perform the updates

 (1) 3 (1) 3

Model 3: All hyperparameters have been tuned

A ML model can often have multiple hyperparameters, such as learning rates, number of layers, layer sizes and 
regularization coefficients. Choice of the hyperparameter values can have dramatic impact on prediction quality.

 (1) 3 (1) 3

The offline/online metric relationship can be mea- sured in one or more small scale A/B experiments using an 
intentionally degraded model.

 (1) 3 (1) 3

Model 2: Offline proxy metrics correlate with actual online impact metrics

Model 2: Offline proxy metrics correlate with actual online impact metrics: A user-facing production system’s 
impact is judged by metrics of engagement, user happiness, revenue, and so forth. A machine learning system 
is trained to optimize loss metrics such as log-loss or squared error.
A strong understanding of the relationship between these offline proxy metrics and the actual impact metrics is 
needed to ensure that a better scoring model will result in a better production system.

 (1) 3 (1) 3

Model 1: Every model specification undergoes a code review and is checked in to a repository

It can be tempting to avoid code review out of expediency, and run experiments based on one’s own personal 
modifications.
In addition, when responding to production incidents, it’s crucial to know the exact code that was run to 
produce a given learned model. For example, a responder might need to re-run training with corrected input 
data, or compare the result of a particular modification. Proper version control of the model specification can 
help make training auditable and improve reproducibility.

 (1) 3 (1) 3

marginnote3app://note/608E9D14-2EB4-4C90-B332-CC4E675AB636
marginnote3app://note/7754A21D-83C4-40FC-828B-274727902153
marginnote3app://note/0B3D1F92-9567-4BA5-A645-932240ADC946
marginnote3app://note/2CC48F2C-B3FA-4C20-80A3-CAD68123ED5F
marginnote3app://note/CD85F5D3-F1F6-402E-BA5D-F7B4B9E2AC0A
marginnote3app://note/6519E5C3-17A5-4A4A-878A-985F647F2B5B
marginnote3app://note/1CF427D9-BCE6-433C-AB7E-1340960871FE
marginnote3app://note/1CD1118E-4237-4169-8871-5A31E4E3BE64
marginnote3app://note/4AF6D383-762A-480E-93A1-51877C01E360


Infra 4: Model quality is validated before attempting to serve it

After a model is trained but before it actually affects real traffic, an automated system needs to inspect it and 
verify that its quality is sufficient; that system must either bless the model or veto it, terminating its entry to the 
production environment

 (1) 5 (1) 5

Faster running integration tests with a subset of training data or a simpler model can give faster feedback to 
developers while still backed by less frequent, long running versions with a setup that more closely mirrors 
production.

 (1) 5 (1) 5

Infra 3: The full ML pipeline is integration tested

A complete ML pipeline typically consists of assembling training data, feature generation, model training, model 
verification, and deployment to a serving system.

 (1) 5 (1) 5

Infra 2: Model specification code is unit tested

Al- though model specifications may seem like “configuration”, such files can have bugs and need to be tested

 (1) 4 (1) 4

Infra 1: Training is reproducible

Ideally, training twice on the same data should produce two identical mod- els.

 (1) 4 (1) 4

7 ML infrastructure tests

An ML system often relies on a complex pipeline rather than a single running binary

TESTS FOR ML INFRASTRUCTURE

 (1) 4 (1) 4

the approach of collecting more data to ensure data representation for potentially under-represented 
categories or subgroups can be effective in many cases

 (1) 4 (1) 4

Tests that can be run include examining input features to determine if they correlate strongly with protected 
user categories, and slicing predictions to determine if prediction outputs differ materially when conditioned 
on different user groups.

 (1) 4 (1) 4

Model 7: The model has been tested for considera- tions of inclusion

There have been a number of recent studies on the issue of ML Fairness [14], [15], which may arise inadvertently 
due to factors such as choice of training data. For example, Bolukbasi et al. found that a word embedding 
trained on news articles had learned some striking associations between gender and occupation that may have 
reflected the content of the news articles but which may have been inappropriate for use in a predictive 
modeling context [14]. This form of potentially overlooked biases in training data sets may then influence the 
larger system behavior.

 (1) 4 (1) 4

marginnote3app://note/BC400338-EAC2-4C8C-9D7E-E947869486D5
marginnote3app://note/DC8891C0-381D-482E-B72E-6C3D5E8D632E
marginnote3app://note/05AC2945-A5E9-4667-A1FD-5A3562707EBE
marginnote3app://note/3D35793A-CD05-41C6-9919-0446437C6335
marginnote3app://note/2B8C08D5-302A-49B1-B24D-40492B35826D
marginnote3app://note/8C7DE9ED-412F-48D6-952F-33E4CF9CD821
marginnote3app://note/263DC24B-06C7-474C-A94E-8FD598A5BFBE
marginnote3app://note/E06D4FD8-EBF7-4971-9177-E69C3C9B4BAE
marginnote3app://note/1FD18E7A-F7F1-4C02-B60A-117F0BE36CAA


Monitor 1: Dependency changes result in notification

ML systems typically consume data from a wide array of other systems to generate useful features. Partial 
outages, version upgrades, and other changes in the source system can radically change the feature’s meaning 
and thus confuse the model’s training or inference, without necessarily producing values that are strange 
enough to trigger other monitoring

 (1) 6 (1) 6

7 monitoring tests

An ML system by definition is making predictions on previously unseen data, and typically also incorporates new 
data over time into training. The standard approach is to monitor the system, i.e. to have a constantly-updated 
“dashboard” user interface displaying relevant graphs and statistics, and to automatically alert the engineering 
team when particular metrics deviate significantly from expecta- tions. For ML systems, it is important to monitor 
serving systems, training pipelines, and input data.

MONITORING TESTS FOR ML

 (1) 6 (1) 6

Infra 7: Models can be rolled back

Models can be quickly and safely rolled back to a previous serving version

 (1) 5 (1) 5

To mitigate the new-model risk more generally, one can turn up new models gradually, running old and new 
models concurrently, with new models only seeing a small fraction of traffic, gradually increased as the new 
model is observed to behave sanely.

 (1) 5 (1) 5

One recurring problem that canarying can help catch is mismatches between model artifacts and serving 
infras- tructure. Modeling code can change more frequently than serving code, so there is a danger that an 
older serving system will not be able to serve a model trained from newer code

 (1) 5 (1) 5

Infra 6: Models are tested via a canary process before deployment

Models are tested via a canary process before they enter production serving environments

 (1) 5 (1) 5

An internal tool that allows users to enter examples and see how the a specific model version interprets it can 
be very helpful. The TensorFlow debugger [17] is one example of such a tool.

 (1) 5 (1) 5

When someone finds a case where a model is behaving bizarrely, how difficult is it to figure out why? Is there 
an easy, well documented process for feeding a single example to the model and investigating the 
computation through each stage of the model

 (1) 5 (1) 5

Infra 5: Model allows debugability

The model allows debugging by observing the step-by-step computation of training or inference on a single 
example

 (1) 5 (1) 5

test for both slow degradations in quality over many versions as well as sudden drops in a new version. For 
the former, setting loose thresholds and comparing against predictions on a validation set can be useful; for 
the latter, it is useful to compare predictions to the previous version of the model while setting tighter 
thresholds.

 (1) 5 (1) 5

marginnote3app://note/B77CE019-4DC6-45A5-84ED-B951E861FB51
marginnote3app://note/1625D3B9-0752-44F2-A5F5-C70D9CDFBC4E
marginnote3app://note/271FEC25-D615-4F4F-8220-51ACEDCB0FEB
marginnote3app://note/29D4A12E-A857-4DE3-B06A-F6204A833FA8
marginnote3app://note/F6575309-DE55-4982-A42D-ED3756A0383C
marginnote3app://note/6406CA9E-C84F-45D6-BCE9-A1E0D3342766
marginnote3app://note/4D571409-69A5-4774-9281-88C9876BF196
marginnote3app://note/825E07CC-3E1E-4FFD-9CEF-C95A17BDEF0E
marginnote3app://note/3152BEEA-FA50-487A-81BE-9219E2064D98
marginnote3app://note/A2E39784-8910-4226-A5B6-B32B917BAC3C


Monitor 7: The model has not experienced a regression in prediction quality

Monitor 7: The model has not experienced a regression in prediction quality on served data

 (1) 7 (1) 7

it is useful to slice performance metrics not just by the versions and components of code, but also by data and 
model versions. Degradations in computational performance may occur with dramatic changes (for which 
comparison to performance of prior versions or time slices can be helpful for detection) or in slow leaks (for 
which a pre-set alerting threshold can be helpful for detection)

 (1) 7 (1) 7

Monitor 6: The model has not experienced degradation

Such as a dramatic or slow-leak regressions in training speed, serving latency, throughput, or RAM usage

 (1) 7 (1) 7

Explicitly monitor the initial occurrence of any NaNs or infinities. Set plausible bounds for weights and the 
fraction of ReLU units in a layer returning zero values, and trigger alerts during training if these exceed 
appropriate thresholds.

 (1) 7 (1) 7

Monitor 5: The model is numerically stable

Invalid or implausible numeric values can potentially crop up during model training without triggering explicit 
errors, and knowing that they have occurred can speed diagnosis of the problem.

 (1) 7 (1) 7

we recommend monitoring how old the system in production is, using the prior measurement as a guide for 
determining what age is problematic enough to raise an alert

 (1) 6 (1) 6

Monitor 4: Models are not too stale  (1) 6 (1) 6

Another approach is to compute distribution statistics on the training features and the sampled serving 
features, and ensure that they match. Typical statistics include the minimum, maximum, or average, values, the 
fraction of missing values, etc.

 (1) 6 (1) 6

To measure this, it is crucial to log a sample of actual serving traffic  (1) 6 (1) 6

imagine adding a new feature to an existing production system. While the value of the feature in the serving 
system might be computed based on data from live user behavior, the feature will not be present in training 
data, and so must be backfilled by imputing it from other stored data, likely using an entirely independent 
codepath. Another example is when the computation at training time is done using code that is highly flexible 
(for easy experimentation) but inefficient, while at serving time the same computation is heavily optimized for 
low latency.

 (1) 6 (1) 6

Monitor 3: Training and serving features compute the same values

the different codepaths should generate the same values, but in practice a common problem is that they do not. 
This is sometimes called “training/serving skew” and requires careful monitoring to detect and avoid.

The codepaths that actually generate input features may differ at training and inference time.

 (1) 6 (1) 6

Using the schema constructed in test Data 1, measure whether data matches the schema and alert when they 
diverge significantly. In practice, careful tuning of alerting thresholds is needed to achieve a useful balance 
between false positive and false negative rates to ensure these alerts remain useful and actionable

 (1) 6 (1) 6

for detecting problems where the world is changing in ways that can confuse an ML system.  (1) 6 (1) 6

Monitor 2: Data invariants hold in training and serving inputs

It can be difficult to effectively monitor the internal behavior of a learned model for correctness, but the input 
data should be more transparent

 (1) 6 (1) 6

marginnote3app://note/C0C964CA-9DDD-4774-BB72-26BFB8F01F75
marginnote3app://note/2A5ECDD0-2D7F-4155-A652-35A3938BBD52
marginnote3app://note/C9795B18-7CB2-402B-AEF1-253B7EA603B5
marginnote3app://note/CFA2DF7D-A8CE-4219-9E86-8C226304D356
marginnote3app://note/1A00EAF1-7374-444A-9BC0-867EBDE05F27
marginnote3app://note/251AAFFA-2A79-4CB4-A19D-0E021A437D40
marginnote3app://note/D6C2686A-2B8A-411D-84AA-480FBFC52294
marginnote3app://note/98EC4704-284E-418F-8A3D-F2CA8D5820A7
marginnote3app://note/03BCFB21-43A5-48DB-974A-8C9E7DE26912
marginnote3app://note/5E24C953-E761-4DA0-A9D5-55AFE8D8917E
marginnote3app://note/3BB8902A-9CE3-4D9D-B000-4FE9FE286764
marginnote3app://note/0491F8D0-E4A8-487B-9AE1-716BE13B2B0D
marginnote3app://note/C5CC532F-63D7-4668-99B3-101AD7C40FEB
marginnote3app://note/7253F454-0319-48EB-8DF3-DC45F2358623


can be useful to periodically add new training data by having human raters manually annotate labels for 
logged serving inputs

 (1) 7 (1) 7

In some tasks, the label actually is available immedi- ately or soon after the prediction is made (e.g. will a user 
click on an ad). In this case, we can judge the quality of predictions in almost real-time and identify problems 
quickly.

 (1) 7 (1) 7

Measure statistical bias in predictions, i.e. the average of predictions in a particular slice of data.  (1) 7 (1) 7

measuring a model’s quality on that validation data before pushing it to serving is only an estimate of quality 
metrics on actual live serving inputs

 (1) 7 (1) 7

marginnote3app://note/A9740D46-24CB-490C-B9BD-90664B5E11A1
marginnote3app://note/2E726E42-23F4-433C-8AEE-7A4DB4F88B68
marginnote3app://note/38A09D06-AE76-496B-A404-AD678FC385A6
marginnote3app://note/E23EB869-4FF6-4A9E-B531-158187959A3E

